Control Systems 1

EE4302 Chapter 1 An Introduction

Textbook: Control System Engineering, Norman S. Nise, 6th edition, Wiley

Control systems are divided into two classes:

- a) If the aim is to maintain a physical variable at some fixed value when there are disturbances, this is a *regulator*.
 <u>Example</u>: speed-control system on the ac generators of power utility companies.
- b) The second class is the *Servomechanism*. This is a control system in which a physical variable is required to follow (track) some desired time function.

Example: an automatic aircraft landing system, or a robot arm designed to follow a required path in space.

Advantages of a Control System

Power amplification

 Radar antenna positioned by the low-power rotation of a knob at the input, requires a large amount of power for its output rotation. Control system will produce the needed power amplification/power gain.

Advantages of a Control System

Remote control

Rover was built to work in contaminated areas at Three Mile Island where a nuclear accident occurred in 1979.

Advantages of a Control System

Convenience of input form

 In a temperature control system, the input is the position on a thermostat and the output is the heat. Thus a convenient position input yields a desired thermal output.

Advantages of a Control System

Compensation for disturbances

 In an antenna system that points in a commanded direction, wind can force the antenna to deviate from commanded direction. The system should detect the disturbance and act accordingly.

Analysis and Design Objectives

- Transient Response must meet certain criteria. Hard disk read write etc.
- Steady-State Response must meet certain criteria.
- The system must have Stability.
 - Total Response = Natural Response + Forced Response
 - Natural response describes the way the system dissipates or gain energy. It is dependent only on the system not the input
 - Forced response depends on the input.
 - Natural response must go to zero leaving only the forced response or oscillate

$$\frac{d^{m}c(t)}{dt^{m}} + a_{n-1}\frac{d^{m-1}c(t)}{dt^{m-1}} + \dots + a_{0}c(t)$$

$$= b_{m}\frac{d^{m}r(t)}{dt^{m}} + b_{m-1}\frac{d^{m-1}r(t)}{dt^{m-1}} + \dots + b_{0}r(t)$$
1) Linear, time-invariant differential equation.
2) Transfer function written using the Laplace transform.

Input	Function	Description	Sketch	Use
Impulse	$\delta(t)$	$\begin{split} \delta(t) &= \infty \text{for } 0 - < t < 0 + \\ &= 0 \text{ elsewhere} \\ \int_{0-}^{0+} \delta(t) dt = 1 \end{split}$	f(t) δ(t)	Transient response Modeling
Step	<i>u</i> (<i>t</i>)	u(t) = 1 for t > 0 $= 0 for t < 0$	f(t)	Transient response Steady-state error
Ramp	tu(t)	$tu(t) = t$ for $t \ge 0$ = 0 elsewhere	f(t)	f Steady-state error
Parabola	$\frac{1}{2}t^2u(t)$	$\frac{1}{2}t^2u(t) = \frac{1}{2}t^2 \text{ for } t \ge 0$ $= 0 \text{ elsewhere}$	f(t)	Steady-state error
Sinusoid	sin wt		f(t)	Transient response Modeling Steady-state error

Why Control Systems?

- Engineering involves the study of design and analysis of engineering systems.
- Engineering systems are physical systems which could be modeled mathematically (mathematical models).
- Many engineering or physical systems are control systems.

Examples are: central heating system, auto pilot, robots, automobiles, etc.

• Software engineers often participate in the development of large softwares for control systems, e.g. software for the control of the space shuttle.